

An Enhanced Approach for Estimating Writable

Working Set by Pre-copy and Prediction

Tin-Yu Wu1, Wei-Tsong Lee2, Jhih-Siang Huang2, Chien-Yu Duan2,Tain-Wen Suen3

1Institute of Computer Science and Information Engineering, National Ilan University, Taiwan, R.O.C.
2Department of Electrical Engineering, Tamkang University, Taiwan, R.O.C.

3Chung-shan institute of Science and Technology, Taiwan, R.O.C.

tyw@mail.tku.edu.tw, wtlee@mail.tku.edu.tw, hjs770502@hotmail.com, jason84195@hotmail.com, qoosuntw@hotmail.com

Abstract- Because cloud computing and cloud-based applications

have attracted more and more attention in recent years, more and
more servers are needed to provide services. However, each
traditional server can execute only one application at one time. In
order to satisfy user requirements and increase the server utilization
rates, server virtualization has thus presented to the public. For
clients to experience seamless services, live migration has become a
significant research topic. Previous researches have revealed that two
important parameters affecting live migration are downtime and total
migration time. Traditional pre-copy approaches can reduce the
downtime but the total migration time is too long due to repeated
retransmissions. Therefore, to decrease the downtime and total
migration time, our proposed scheme sets the threshold values based
on memory modification prediction technique to determine whether
the pages must be transferred in the stop-and-copy phase.

Keywords: Virtual Machine, Live Migration , Pre-copy

I. INTRODUCTION
With the increased adoption of cloud-based applications in

recent years, virtualization technology for cloud computing,
which is most often applied to computers with hierarchical
memory, becomes more and more important. The lately
development of virtualization technology allows users to
establish several virtual machines (VMs) on one physical
machine to simultaneously run multiple operating systems
(OSs), namely OS virtualization.

Virtualization at the server is server virtualization. At
present, one server executes one task only, which leads to low
server utilization rates, while server virtualization enables
higher utilization rates of the server by partitioning one physical
server into multiple virtual servers. Although server
virtualization can improve the service availability and achieve
dynamic resource management, the heavy workloads or
maintenance on the server might occur and terminate the service.
In order to serve the customers incessantly, service providers
have developed live migration technique for the customers to
experience seamless services.

Currently, memory migration included three major steps:
1) Push Phase: The source VM continues to run and push

modified memory pages to the destination.
2) Stop-and-copy Phase: The source VM is stopped and

all the remaining memory pages are copied to the
destination.

3) Pull Phase: The new VM executes. If the new VM
accesses a memory page that has not been copied yet,
the page fault occurs and this page is copied from the
source VM.

Two main approaches at present are pre-copy, which
integrates the former two phases, and post-copy, which
integrates the latter two. There are two important parameters of
the modified version of pre-copy:

1) Total migration time: the time from the migration start
to the migration end; namely, the time from the
iterative pre-copy phase to the commitment phase.

2) Downtime: the time from when the source VM stops to
when the destination resumes; namely, the time from
the stop-and-copy phase to the commitment phase.

When customers experience the downtime, it means that the
service is terminated. In other words, when the downtime of a
service tends to zero, the optimal live migration can be attained.

Pre-Migration Reservation Iterative Pre-Copy Stop-and-Copy Commitment Activation
time

Total migration time

Downtime

Figure 1. Total migration time and downtime of pre-copy

Though decreasing the downtime efficiently, pre-copy

migration transmits all memory pages in the first round of
iteration and repeats iterative transmissions, which causes
unnecessary retransmissions of certain memory pages, prolongs
the total migration time and reduces the performance.

To solve the above-mentioned problems, we propose a
prediction model to predict the probability of memory
modification and monitor the relative modification rate of each
memory with the aim to reduce the memory amount in the first
round and unnecessary iterative migration in the subsequent
rounds.
The rest of the paper is organized as follows. Section II
introduces related work and approaches. Section III elaborates
our proposed scheme that improves the file size for the first
round and avoids unnecessary retransmissions to decrease the
total migration time and downtime. Section IV presents the
simulation results and performance analysis by comparing our
scheme with pre-copy[1] and Time-Series Based Pre-copy [2].
Finally, the conclusion is given in Section V.

227978-1-4673-5742-5/13/$31.00 ©2013 IEEE ICOIN 2013

II. BACKGROUND AND RELATED WORK
As the approach currently adopted by VMware, Xen and

KVM, pre-copy migration proposed by [1] include the following
six steps:

1) Pre-Migration: Make sure that the resources required to
receive migration are guaranteed on the destination
host.

2) Reservation: Confirm the available resources on the
destination host and notify the source host to start the
migration operation.

3) Iterative Pre-Copy: The source host starts this step by
iteratively copying all the memory pages to the
destination host. All memory pages are transferred to
the destination host in the first round of iteration while
pages dirtied in the previous iteration are transferred in
the subsequent iterations.

4) Stop-and-Copy: The VM running on the source host is
suspended and the remaining memory pages, pages
with high modification rate, are transferred to the
destination host.

5) Commitment: The destination host confirms that all
data of the migrated VM has been received successfully
and acknowledges the source host to discard the
original VM.

6) Activation: VM on the destination host is now
activated.

Generally, pre-copy migration judges whether the pages
have been migrated by the following three kinds of bitmap:

 to_send: the dirty pages that have been modified in the
former iteration and might be sent to the destination
host in the current iteration.

 to_skip: the dirty pages that have been modified in the
current iteration and would be skipped.

 to_fix: the pages with high modification rate and
should be transferred in the stop-and-copy phase.

Because the pages modified in the current iteration must be
transferred in the subsequent iterations, pre-copy migration
reduces the downtime efficiently but prolongs the total
migration time due to unnecessary repeated retransmissions.
This paper further defines the pages with high probability of
modification as Writable Working Sets (WWS) and finds that
once the memory pages have been modified, it is very possible
that the adjacent pages would be modified also. The
administrator chooses a minimum and a maximum bandwidth
limit and transfers the pages at the minimum bandwidth in the
first pre-copy round in case the decrease in system performance.
Supposing the dirtying rate of the pages is higher than the
maximum bandwidth, the pages are of high dirtying rate and
should be transferred in the stop-and-copy phase.

Based on the three kinds of bitmap described above, [2]
gives the following equations to decide when not to send dirty
page, p. Supposing dirty page p meets the three equations, p
should not be sent to the destination host in this iteration:

_ & _
_ & _
_ & _

p to send p to skip
p to send p to skip
p to send p to skip

 
 
  (1)

If p meets Equation (2) in the iteration,

_ & _p to send p to skip  (2)

and

1

(_ _ [])
N

i

p to send h i K


 
 (3)

Where K means the threshold of high dirty pages, p should
be sent in the stop-and-copy phase.

Although this method reduces the number of iterations, the
optimal value of K is 3, which means that if the memory has
been successively modified for 3 times, the page is considered
high dirty rate and will be transferred in the stop-and-copy phase
that increases the file size in this phase and the downtime also.[3]
integrates Markov prediction model with Bayes conditional
probability to predict the probability of modification in the next
rounds of iterations. Traditional memory pages are marked as 0
to denote "read" and "not modified," but to improve the
prediction accuracy, the authors moreover set 0, 1 and 2 to
denote "not modified," "read" and "written."

Because the system monitoring starts from the
pre-migration phase, the modification probability of memory
pages can be predicted in the first round of iteration. Through
the predicted probability, a threshold value is selected to
determine whether to send the page or not. In every iteration, the
pages with higher dirty rate than the threshold value will not be
transferred.

The above-mentioned memory prediction technique simply
predicts the probability of memory modification. To accurately
estimate whether to execute migrations or not and to avoid
unnecessary retransmission, the probability must be adjusted
according to the current memory, namely, to compare with the
skip-table to decide whether to migrate or not. To reduce the
transmission in the first round of iteration, the authors starts the
monitoring right before the migration and determines whether to
migrate or not after the beginning of the first iteration.

Page

number
2 4 7 8 10 12 15 … …

Probability_table0

Page

number
2 4 7 8 10 12 15 … …

Dirty_table

page M0 M1 M2 M3 … … … M8 M9

1 0 1 1 1 1 1

2 1 0 1 0 0 1

… … … … … … … … … …

Change_table

copy

Page

number
2 48 36 8 30 15 12 … 7

probability 100% 98% 86% 84% 80% 75% 36% 1%

Calculate

頁號 7 41 72 35 10 12 15 … …

pick

Page

number
0 0 0 0 0 0 0 … …

clean

Page

number
1 3 8 35 10 16 20 … …

update
Send_table

頁號 1 3 8 35 10 16 20 … …

Skip_table

Dirty_table

Dirty_table

copy

update

Not to transform
Figure 2. The flowchart of memory prediction in [3]

III. PROBLEM STATEMENT AND PROPOSED METHOD
As described in the first section, the total migration time for

228

pre-copy is too long because of two reasons:
1) All memory pages are transferred in the first round of

iteration. Since the file size is too large, the
transmission time of the first round will be prolonged.

2) Once the pages are modified in this iteration, they will
be transferred in the subsequent iteration, which leads
to unnecessary retransmissions.

To solve the file size problem in the first iteration mentioned
in 1), we will use Markov prediction model proposed in [3] to
predict the memory. Next, by integrating the predicted
probability of memory presented in [3] and our defined related
dirty rate, we can redefine the K value proposed in [2] to
determine whether to transfer the memory to the stop-and-copy
phase. The pages with higher dirty rate and the higher predicted
probability of dirty rate will be chosen to be transferred in the
stop-and-copy phase.

In the following, we will discuss predicted probability of
memory modification and related dirty rate, respectively.

A. Predicted Probability of Memory Modification
[3] predicts the memory modification according to

probability theory but its proposed prediction model is different
from traditional memory operations. Although there are only
two traditional memory statuses: "read" or "not modified," [3]
presents three kinds of memory statuses: "not modified," "read"
and "written." However, in our opinion, the read action during
the memory-copying process does not influence the migration
efficiency directly. Therefore, we here modify the memory
prediction model.

1) Supposing the memory has been modified, its status is
1E . Supposing the memory has been read or not

modified, its status is 0E . Thus, the probability of state
change can be

() (|)i j i j ijP E E P E E P   (4)

2) If there are n statuses of the memory, they will be
1 2 3 nE ,E ,E ,...,E . The probability for iE to turn into iE

can be

11 12 1

21 22 2

1 2

() (|)

n

n
i j i j

n n nn

P P P
P P P

P E E P E E P

P P P

 
 
    
 
 
 

 (5)

Because there are only two traditional memory

statuses, n=2.
3) Suppose the initial status of the memory is k=0. After k

times of status modification, the probability of jE in
the kth iteration will be

 
1

1
n

j
j

k



 (6)

Based on the non-aftereffect property of
Markov process and conditional probability formula

given by Bayes' formula, we get:

   
1

1
n

j j ij
i

k k P ,j=1,2,...,n 


 

(7)

and the row vector

         1 2 3, , ,..., nk k k k k        (8)

Therefore,

   
     

     

2

1 0

2 1 0

1 0 k

P

P P

k k P P

 

  

  



 

   (9)

Where        1 20 0 , 0 , 0n       is the probability
vector of the initial status.

4) For example:

Table 1. The first 20 status changes of a dirty page

Table 1 show that ten processes start from status 1, in

which seven of them changes from status 1 to 0 and three of
them changes from status 1 to 1. Thus:

Similarly, we can use this formula to calculate the
probability from status 0 to 0 and from status 0 to 1. Finally, we
get the status change matrix:

0.667 0.334
0.7 0.3

P  
  
  (10)

After 20 times of iterations, we get the status matrix of the
dirty page, P. To predict the status probability of the dirty page
only, we deem that the initial status is    0 0 1  . After k
rounds of status changes, the status probability would be  k .
k=1.

         0.667 0.334
1 0 0 1 0 1 0.7 0.3

0.7 0.3
P P 

 
    

  (11)

Therefore, after this iteration, the probability that the dirty
page will be modified again is 30%.

B. Related Dirty Rate
Because the principle for memory migration is that the

lower the memory modification rate is, the faster the dirty page
will be migrated; the higher the memory modification rate is, the
later the dirty page will be migrated, and even later than the
stop-and-copy phase. Instead of predicting the memory page

229

modification rate only, our proposed method sets the related
dirty rate to find out the pages with the highest number of
modification. Thus, we can more accurately figure out the pages
suitable to be transferred in this iteration and the pages to be
transferred till the next iteration.

To find out the pages suitable to be transferred in each
iteration, we start the monitor before the migration, just like the
foregoing predicted probability of memory modification.
According to the data obtained from the monitor, we get the
pages with higher number of modification, the related dirty rate
namely.

To record the number of modifications of each page, we
further add the to_send_num to the pre-copy approach, compare
the to_send_num of each page after the beginning of every
iteration, and find out the maximum of the to_send_num, the
max_to_send_num namely. By the formula given below, we can
calculate the related dirty rate to find out the page with the
highest number of modifications.

_ _
max_ _ _

to send numberthe ralated dirty rate
to send number



According to the definition, the maximum of the related
dirty rate is 1 and the minimum is 0 (max_ _ _ 0to send num ).
The closer to 1 the related dirty rate is, the more page
modification times there will be. On the contrary, the closer to 0
the related dirty rate is, the less page modification times there
will be. With the basic understanding of the related dirty rate, we
integrate the predicted probability of memory modification with
the related dirty rate to define a new K.

K probability the ralated dirty rate 
Because the related dirty rate continuously records

memory modifications, the record will not be updated because
of the transmission in the previous iteration. In addition, the
related dirty rate is based on the number of modifications and
thus can be regulated dynamically. Therefore, compared with
the K value presented in [2], our proposed new K by integrating
the predicted probability of memory modification with the
related dirty rate can be adjusted dynamically also. Since our
method covers memory prediction, no matter the iterative
pre-copy phase is long or short, when the pages with the value
higher than K need to be transferred in the stop-and-copy phase,
it means that the pages have high related dirty rate and high
predicted probability of changes in the subsequent iterations.
This proves that by using our defined K, we can find out the
pages to be transferred in the stop-and-copy phase more
accurately.

However, with a new threshold value K, it is still possible
that the page transmission threshold is lower than K, which
means that the page with low predicted modification rate and
low related dirty rate cannot reach the destination in the iterative
pre-copy phase.

First, we discuss the conditions for transferring pages.
Whether to transfer the pages or not is not determined simply by
the send_table based on the K value. We have to compare the
send_table with the skip_table to find out whether the same

pages have been transferred. The serial numbers of the pages on
the skip_table reveal that when we determine whether to transfer
the pages or not, the pages have been modified. In order to avoid
unnecessary retransmissions, the pages on the skip_table would
not be transferred in this round of iteration. Therefore, if a page
appears both on the send_table and the skip_table, this page will
not be transferred in this iteration.

According to above-mentioned conditions for transferring
pages, it is possible that although the memory modification rate
and the related dirty rate is low, the pages are modified only
when we determine to transfer the pages or not. In such a
manner, certain memory pages with less number of
modifications and low related dirty rate still cannot reach the
destination in the iterative pre-copy phase and must be
transferred in the stop-and-copy phase.

To reduce the occurrence of such a situation, before the
stop-and-copy phase, namely the last iteration of the iterative
pre-copy phase, we use both the send_table and the skip_table to
decide to transfer the pages or not. Supposing in the last iteration,
the serial number of the pages in the foregoing situation does not
appear in the skip_table, we will transfer the pages in the last
iteration.

IV. PERFORMANCE EVALUATION

Figure 3. Downtime under low dirty rate

Figure 3 displays the downtime of different memory
migration mechanisms under low dirty rate environment. In the
first round of iteration, traditional pre-copy and time-series
approaches operate the memory migration from the source host
to the target host. Supposing the VM moves to the
stop-and-copy phase right after the first round of iteration, there
will be no pages for transmission in the stop-and-copy phase and
thus the downtime of the pre-copy and time-series approaches is
0. According to the predicted probability of memory
modification, our proposed method chooses to migrate the pages
with high modification probability in the stop-and-copy phase
and the downtime in the first round of iteration therefore is
higher than the other schemes.

Time-series approach considers the pages modified for 3
times as high dirty rate. Because no such pages appear in the
second round of iteration, the downtime of the time-series
approach in the second round remains as 0.

In the following rounds, low dirty rate gradually minimizes

230

the number of modified pages and leads to the accurate WWS.
The figure reveals that after several rounds of iteration, the
downtime of the pre-copy approach and our method gradually
reduces for finding out the WWS. Since the number of modified
pages is minimized, the pages modified for 3 times become less
and the curve of the time-series approach tends to increase
slowly.

Because the pre-copy approach aims to minimize the
downtime to offer clients seamless services and the time for a
persistence of vision lasts for 0.1~0.4 seconds, the optimal
downtime for the pre-copy approach ranges between 0.1~0.4
seconds. Figure 3 shows that the downtime of the pre-copy
approach does not approach 0.4 seconds until the 12th rounds of
iteration and the downtime of the time-series approach increases
slowly after the 7th round of iteration, 1.15 seconds
approximately. As for our method, the downtime can be reduced
to around 1.15 seconds in the 7th round of iteration.

Figure 4. Total migration time under low dirty rate

Figure 4 shows the total migration time of different

memory migration mechanisms under low dirty rate
environment. It is revealed that in most rounds of iteration, our
method outperforms the pre-copy and time-series approaches
because our method can figure out the pages with higher
modification probability based on the predicted probability of
memory modification and migrate the pages in the following
rounds of iteration.

The total migration time refers to the migration time of all
rounds plus the downtime. Together with Figure 4, we find that
the downtime of the pre-copy and time-series approaches is 0 in
the first round of iteration, which means that the total migration
time of the pre-copy and time-series approaches in the first
round is used for memory migration. However, the downtime of
our proposed method occupies most of the total migration time
from the beginning.

The performance evaluation reveals that in the same low
dirty rate environment, the pre-copy approach spends more
rounds of iteration to obtain the better downtime but result to too
long total migration time. Although the time-series approach can
decrease the total migration time by reducing the rounds of
iteration, our method can attain the same downtime but the
better total migration time in the same rounds of iteration. To
compare with traditional pre-copy approach, on the other hand,
our proposed method can result to the same downtime in less
rounds of iteration but the less total migration time. To sum up,
our proposed method obviously outperforms the other two

schemes.

V. CONCLUSIONS
By integrating the predicted probability of memory

modification with our proposed related dirty rate, we can predict
the probability of memory modification, find out the pages with
the highest number of modifications, and determine the pages
suitable to be transferred in the iterative pre-copy phase. In this
way, we can redefine the suitable file sizes for each phase to
avoid the prolongation of the total migration time and the
downtime.

The simulation result displays that in the same low dirty
rate environment, our method can reach the downtime and the
less total migration time in less rounds of iteration while
comparing with the pre-copy approach, and reach almost the
same downtime in the same rounds of iteration but the less total
migration time while comparing with the time-series approach.
This clearly shows that our method excels the other two
schemes.

Nevertheless, our method encounters the same problems
like the pre-copy scheme under high dirty rate. All we can do is
to decrease the repeated iterative transmissions and move into
the stop-and-copy phase as early as possible to reduce
unnecessary retransmissions.

References
[1] Christopher Clark, Keir Fraser,“Live migration of virtual machines”,

NSDI'05 Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation, Vol. 2, pp. 1-14. (2005)

[2] Bolin Hu , Zhou Lei , Yu Lei , Dong Xu , Jiandun Li , “A Time-Series
Based Pre-copy Approach for Live Migration of Virtual Machines”, ,2011
IEEE 17th International Conference on Parallel and Distributed Systems
(ICPADS),pp. 947 – 952, 7-9 Dec , (2011)

[3] SUN Guo-fei, GU Jian-hua,HU, Jin-hua, ZHAO Tian-hai ,“Improvement
of Live Memory Migration Mechanism for Virtual Machine Based on
Pre-copy”, Computer Engineering, Vol.37, No.13, July(2011)

[4] Michael R. Hines, Umesh Deshpande, Kartik Gopalan, “Post-copy live
migration of virtual machines”, ACM SIGOPS Operating Systems Review,
Vol. 43, Issue 3, July (2009)

[5] Zhaobin Liu,Wenyu Qu ,Tao Yan ,Haitao Li ,Keqiu Li,“Hierarchical Copy
Algorithm for Xen Live Migration”,2010 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery,
pp.361-364, Oct (2010)

[6] Kuno, Y. , Nii, K. ,Yamaguchi, S.,“A Study on Performance of Processes
in Migrating Virtual Machines”,2011 10th International Symposium on
Autonomous Decentralized Systems (ISADS), pp.567–572, March (2011)

[7] Haikun Liu, Hai Jin, Xiaofei Liao, Chen Yu, Cheng-Zhong Xu, “Live
Virtual Machine Migration via Asynchronous Replication and State
Synchronization”, IEEE Transactions on Parallel and Distributed Systems,
Vol. 22, pp.1986-1999, December (2011)

[8] Fei Ma, Feng Liu, Zhen Liu , “Live virtual machine migration based on
improved pre-copy approach”, 2010 IEEE International Conference on
Software Engineering and Service Sciences (ICSESS), pp.230-233,16-18
July ,(2010)

[9] Ibrahim, K.Z. , Hofmeyr, S, Iancu, C, Roman, E. ,“Optimized pre-copy
live migration for memory intensive applications”, 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pp. 1-11, 12-18 Nov. (2011)

[10] Wentian Cui ,Meina Song , “Live memory migration with matrix bitmap
algorithm”, 2010 IEEE 2nd Symposium on Web Society
(SWS),pp.277-281,16-17 Aug. (2010)

231

